
Appl Math Optim (2014) 69:123–139
DOI 10.1007/s00245-013-9219-z

Minimal Convex Combinations of Three Sequential
Laplace-Dirichlet Eigenvalues

Braxton Osting · Chiu-Yen Kao

Published online: 13 September 2013
© Springer Science+Business Media New York 2013

Abstract We study the shape optimization problem where the objective function is
a convex combination of three sequential Laplace-Dirichlet eigenvalues. That is, for
α ≥ 0, β ≥ 0, and α + β ≤ 1, we consider inf{αλk(Ω) + βλk+1(Ω) + (1 − α − β) ×
λk+2(Ω) : Ω open set in R

2 and |Ω| ≤ 1}. Here λk(Ω) denotes the k-th Laplace-
Dirichlet eigenvalue and | · | denotes the Lebesgue measure. For k = 1,2, the minimal
values and minimizers are computed explicitly when the set of admissible domains
is restricted to the disjoint union of balls. For star-shaped domains, we show that for
k = 1 and α + 2β ≤ 1, the ball is a local minimum. For k = 1,2, several proper-
ties of minimizers are studied computationally, including uniqueness, connectivity,
symmetry, and eigenvalue multiplicity.

Keywords Shape optimization · Laplacian eigenvalues · Dirichlet boundary
condition · Isoperimetric problems

1 Introduction

Let Ω ⊂ R
2 be an open, bounded domain and {λk(Ω),ψk(x;Ω)}∞k=1 denote the

eigenpairs of the Laplace-Dirichlet operator for the domain Ω (listed with multi-
plicity), satisfying

−�ψ(x) = λψ(x), x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω.
(1.1)
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The eigenvalues λk(Ω) are characterized by the Courant-Fischer formulation

λk(Ω) = min
Ek⊂H 1

0 (Ω)

subspace of dim k

max
ψ∈Ek,ψ �=0

∫
Ω

|∇ψ |2dΩ
∫
Ω

ψ2dΩ
, (1.2)

where Ek is in general a k-dimensional subspace of H 1
0 (Ω) and at the minimizer,

Ek = span({ψj (x;Ω)}kj=1). The ratio in (1.2) is referred to as the Rayleigh quotient.
General references for Laplace-Dirichlet eigenvalues can be found in [5, 6, 8].

In this work, we consider the shape optimization problem where the objective
function is a convex combination of three sequential Laplace-Dirichlet eigenvalues.
That is, we consider the following (α,β)-parameterized optimization problem:

C
j∗
α,β = inf

Ω∈A
C

j
α,β(Ω) and Ω̂

j
α,β = {

Ω ∈A : C
j
α,β(Ω) = C

j∗
α,β

}
, (1.3)

where

T := {
(α,β) ∈R

2 : α ≥ 0, β ≥ 0, α + β ≤ 1
}
,

A := {
Ω ⊂ R

2 : Ω quasi-open and |Ω| ≤ 1
}
,

C
j
α,β(Ω) := αλj (Ω) + βλj+1(Ω) + (1 − α − β)λj+2(Ω), (α,β) ∈ T and Ω ∈A.

We will also consider several reduced admissible classes. Let B ⊂ A, be the set of
balls, i.e.,

B := {Ω ∈ A : Ω is a ball}.
We’ll use the notation B 
B to denote the class of domains consisting of the disjoint
union of two balls. We say a domain Ω is FN representable if

Ω = {
(r, θ) : r ≤ RN(θ), θ ∈ [0,2π]}, where RN(θ) =

N∑

k=−N

ake
ıkθ and a−k = ak.

(1.4)
Define the set of all FN representable domains by

FN = {Ω ∈ A : Ω is FN representable}. (1.5)

Note that F∞ is the class of star-shaped, bounded domains. Finally, we use the nota-
tion FN 
FN to denote the class of domains consisting of the disjoint union of two
FN representable domains.

In what follows, we give previous results for this problem and state our own results
with an outline of this paper.

1.1 Previous Results

The simplest problem of the general form (1.3) is the minimization of a single eigen-
value, i.e.,

min
Ω

λj = min
Ω∈A

C
j

1,0(Ω).
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The existence of a minimizer for general j was recently shown to exist and have finite
perimeter [4, 10]. It is well known that among all open, two-dimensional domains of
equal area, the unique minimizer of λ1(Ω) is a ball (Faber-Krahn inequality) and
the unique minimizer of λ2(Ω) is the disjoint union of two equal-area balls (Krahn-
Szegö inequality); see [6]. Wolf and Keller [15] showed the minimizer of λ3(Ω) is
connected and that a ball is a local minimizer. It remains as a conjecture that a ball is
a global minimizer of λ3(Ω); see [6]. The minimizer of λ4(Ω) is conjectured to be
the disjoint union of two balls with radii which have ratio j0,1/j1,1 where jm,n is the
n − th zero of the m − th order Bessel function Jm; see [6]. There are no theoretical
results for the explicit optimal shapes for j ≥ 5, however there are several compu-
tational studies in this area. In [13], minimizers for the first ten Laplace-Dirichlet
eigenvalues were found numerically. Here, a level set approach was used to represent
the domain and a relaxed formulation of the Laplace-Dirichlet problem was used to
compute the eigenvalues. In [1], the same problem for j ≤ 15 was studied using a
high-accuracy meshless method for the eigenpair computation and the boundaries
were parameterized using Fourier coefficients. The results were very similar to those
in [13], except that an improved domain was found for the seventh eigenvalue. It was
also observed that the minimizer for the thirteenth eigenvalue is not symmetric. The
multiplicity of λj for the optimal domains was also investigated.

The shape optimization problem where the objective function is a convex com-
bination of two sequential Laplace-Dirichlet eigenvalues, i.e., taking α + β = 1 in
C

j
α,β :

min
Ω∈A

C
j

α,1−α(Ω) for α ∈ [0,1], (1.6)

has also been studied. In [15], the range of the first two Laplace-Dirichlet eigen-
values (λ1(Ω),λ2(Ω)) for a planar domain Ω of unit area was explored. The
boundary of the range consists of the two rays {(λ1, λ2) : λ2 = λ1 and λ1 ≥ πj2

0,1}
and {(λ1, λ2) : λ2 = j2

1,1

j2
0,1

λ1 and λ2 ≥ 2πj2
0,1} and a curve connecting their endpoints

which was determined numerically by studying (1.6) with j = 1. It was observed
computationally that for α > 0, the minimizer is connected, while it is known that
for α = 0, the minimizer is the disjoint union of two equal-area balls (Krahn-Szegö
inequality). Thus, there is a topological change in the minimizer as α ↓ 0. In [2], the
means of sequential eigenvalues are studied, i.e., (1.6) with (α,β) = (0.5,0.5), and
the connectivity of optimal domains is investigated. In particular, for j = 1 and 2,
using an argument similar to that of Wolf and Keller [15], it is established that the
minimizers are connected. In [12], (1.6) is studied and it is shown C

j∗
α,1−α is a Lips-

chitz continuous, non-increasing, concave function of α and the minimizer is upper
hemicontinuous in α. Furthermore, for j ≤ 5, properties of the minimizer (e.g., the
number of connected components) are studied computationally as a function of α.
For j = 2, it is shown that for α ∈ [0, 1

2 ], the ball is a local minimizer.
The present work is motivated by [7], where (1.3) is considered for j = 1. They

show that a minimizer of C1
α,β has no more than 2 connected components and prove

that for a subset of (α,β) ∈ T , the minimizer is connected. They also conjecture that
the minimizer of (1.3) for j = 1 is connected unless β = 1.

For a more extensive discussion of related work in this area, please consult [12].
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1.2 Results and Outline

In Sect. 2 we give some continuity results for the minimum values and minimizers of
C

j
α,β(Ω) over the admissible class A. We also show (in Proposition 2) that a ball is a

local minimizer of C
j
α,β(Ω) for α+2β ≤ 1 in the admissible class F∞. In Sect. 3, we

discuss the minimizers of C
j
α,β(Ω) over the admissible class, B
B, consisting of the

disjoint union of balls. Here, the solution can be written explicitly in terms of zeros
of Bessel functions. In Sect. 4, we describe a computational method for minimizing
C

j
α,β(Ω) over the admissible class, FN 
FN , consisting of the disjoint union of two

FN representable domains. The method is used to numerically investigate several
properties of the minimizers for (1.3). In particular, for j = 1 and 2, we answer the
following questions (1) For what values of (α,β) ∈ T is the minimizer unique, have
symmetry, or is connected? (2) Are there values (α,β) ∈ T for which the minimizer
does not vary continuously? (3) For varying values of (α,β) ∈ T , what are the mul-
tiplicities of the first few Laplace-Dirichlet eigenvalues for the minimizing domains?
(4) For what values of (α,β) ∈ T does the optimal solution agree with the optimizer
over the admissible class B 
B? In Sect. 5, we conclude with a brief discussion.

2 Results for the Minimum of C
j
α,β(Ω) over the Admissible Sets A and F∞

In this section we give some analytical results for the shape optimization problem of
minimizing C

j
α,β(Ω) over the admissible classes A and F∞.

Since C
j
α,β(Ω) is a non-decreasing and Lipschitz continuous function of the

Laplace-Dirichlet eigenvalues, the recent results of [4, 10] show that the infimum
in (1.3) exists and that every minimizer has finite perimeter. For a parameterized
optimization function, such as in (1.3), the optimal value and minimizing set, when
viewed as a function of the parameter, inherit some continuity properties from the ob-
jective function. We make these statements precise for (1.3) in the following propo-
sition, which is a direct generalization of [12, Proposition 1] and we state without
proof. Recall that a set valued function Γ : A → B is upper hemicontinuous at a
point a ∈ A if for all sequences {an} such that an → a and all sequences {bn} such
that bn ∈ Γ (an), there exist a b ∈ Γ (a) such that bn → b.

Proposition 1 Consider the (α,β)-parameterized shape optimization problem (1.3).
For each j ∈ N the following statements hold:

1. For each (α,β) ∈ T , C
j,∗
α,β exists and Ω̂

j
α,β is a non-empty and closed set. Further-

more, every Ω ∈ Ω̂
j
α,β has finite perimeter.

2. The optimal value, C
j,∗
α,β , is a non-increasing, Lipschitz continuous, and concave

function in both α and β .
3. As a set-valued function of (α,β), Ω̂

j
α,β is upper hemicontinuous.

We now restrict our attention to F∞ ⊂ A, the class of domains which are star-
shaped and bounded. The following proposition shows that for j = 1 and a large
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subset of (α,β)-values in T , the ball is a local minimizer. Our computational results,
presented in Sect. 4, suggest it is a global minimizer.

Proposition 2 The ball is a local minimizer of C1
α,β(Ω) over the admissible class

F∞ for the set {(α,β) ∈ T : α + 2β ≤ 1}.

Proof Our proof is a generalization of the proof that the ball is a local minimum of
λ3(Ω) given in [15, Thm. 8.3], to which we refer the reader for details. Consider the
nearly circular domain Ωε = {(r, θ) : r < R(θ, ε), θ ∈ [0,2π]}, where

R(θ, ε) := 1 + ε

∞∑

k=−∞
ake

ikθ + ε2
∞∑

k=−∞
bke

ikθ + O
(
ε3), an = a−n and bn = b−n.

Using the asymptotic formulas for |Ωε |λk(Ωε) given in [15, App. A], the following
holds. If a2 �= 0,

C1
α,β(Ωε) = π

[
αj2

0,1 + (1 − α)j2
1,1

] + 2επj2
1,1(1 − α − 2β)|a2| + O

(
ε2) (2.1)

and if a2 = 0,

C1
α,β(Ωε) = π

[
αj2

0,1 + (1 − α)j2
1,1

] + Aαε2 + B(1 − α)ε2

+ (1 − α − 2β)Cε2 + O
(
ε3) (2.2)

where

A = 4πj2
0,1

∞∑

n=1

(

1 + j0,1
J ′

n(j0,1)

Jn(j0,1)

)

|an|2

B = 2πj2
1,1

∑



(

1 + j1,1
J ′

−1(j1,1)

J−1(j1,1)

)

|a|2

C = 2πj2
1,1

∣
∣
∣
∣b2 −

∑



(
1

2
+ j1,1

J ′
(j1,1)

J ′
(j1,1)

)

a1+a1−

∣
∣
∣
∣.

Here, A and B are both non-negative constants, dependent on {an}, which vanish
only if an = 0 for all n. C is a non-negative constant, dependent on both {an} and
b2. In both (2.1) and (2.2), if α + 2β ≤1 and 0 ≤ α ≤ 1, any perturbation of the ball
increases C1

α,β , showing that the ball is a local minimizer. �

3 Minimum of C1
α,β(Ω) and C2

α,β(Ω) over the Union of Two Disjoint Balls,
B �B

Consider the disjoint union of two balls, Dr∈ B 
 B, with radii given by r1 := r and
r2 := √

π−1 − r2 where r2 ∈ [0, (2π)−1]. Note that the measure of Dr is exactly one
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and that the second ball is larger than the first. The first eigenfunction is supported in
the larger ball, so

λ1(Dr) = π
(
1 − πr2)−1

j2
0,1.

The second, third, and fourth eigenvalues depend on the ratio of the ball sizes. We
compute

λ2(Dr) = λ3(Dr) = πj2
1,1

1 − πr2
and λ4(Dr) = πj2

2,1

1 − πr2

for r2 ∈ I1 :=
[

0,
1

π

j2
0,1

j2
2,1 + j2

0,1

]

λ2(Dr) = λ3(Dr) = πj2
1,1

1 − πr2
and λ4(Dr) = j2

0,1

r2

for r2 ∈ I2 :=
[

1

π

j2
0,1

j2
2,1 + j2

0,1

,
1

π

j2
0,1

j2
1,1 + j2

0,1

]

λ2(Dr) = j2
0,1

r2
and λ3(Dr) = λ4(Dr) = πj2

1,1

1 − πr2

for r2 ∈ I3 :=
[

1

π

j2
0,1

j2
1,1 + j2

0,1

,
1

2π

]

.

For the domain Dr , the convex combination of eigenvalues of the first three eigenval-
ues, C1

α,β , is

C1
α,β(Dr) =

⎧
⎨

⎩

[αj2
0,1 + (1 − α)j2

1,1] π

1−πr2 for r2 ∈ I1 ∪ I2

β
j2

0,1

r2 + [αj2
0,1 + (1 − α − β)j2

1,1] π

1−πr2 for r2 ∈ I3

(3.1)

and the convex combination of eigenvalues of the second through fourth eigenvalues,
C2

α,β , is

C2
α,β(Dr) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(α + β)
πj2

1,1

1−πr2 + (1 − α − β)
πj2

2,1

1−πr2 for r2 ∈ I1

(α + β)
πj2

1,1

1−πr2 + (1 − α − β)
j2

0,1

r2 for r2 ∈ I2

α
j2

0,1

r2 + (1 − α)
πj2

1,1

1−πr2 for r2 ∈ I3.

(3.2)

Proposition 3 Define the partition, T = T 1
1 ∪ T 1

2 , by

T 1
1 :=

{

(α,β) ∈ T : β ≤ j2
1,1

2(j2
1,1 − j2

0,1)
− α

2

}
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Fig. 1 (left) The value of C1◦
α,β := inf{C1

α,β(Dr ) : r2 ∈ [0, (2π)−1]} and (right) the corresponding opti-
mal parameter r for (α,β) ∈ T . See Proposition 3 and Sect. 3

T 1
2 :=

{

(α,β) ∈ T : β >
j2

1,1

2(j2
1,1 − j2

0,1)
− α

2

}

.

Then for C1
α,β(Dr) as defined in (3.1),

min
r2∈[0,(2π)−1]

C1
α,β(Dr) ≡ C1◦

α,β =
{

π(αj2
0,1 + (1 − α)j2

1,1) if (α,β) ∈ T 1
1

2π((α + β)j2
0,1 + (1 − α − β)j2

1,1) if (α,β) ∈ T 1
2

with minimizer given by

r2 =
{

0 if (α,β) ∈ T 1
1

1
2π

if (α,β) ∈ T 1
2 .

Remark 4 The optimal objective function values, C1◦
α,β , and corresponding optimal

parameters, r , are plotted in Fig. 1 for (α,β) ∈ T . The optimal objective function
values for particular values (α,β) ∈ T are given in Table 1 (top).

Proof We first note that the value of C1
α,β(Dr) for r2 ∈ I1 ∪ I2 is a monotone in-

creasing function in r . Thus the minimum occurs for r = 0, which implies the
minimizer over this interval is a single ball, D0. The optimal value is C1

α,β(D0) =
π(αj2

0,1 + (1 − α)j2
1,1). For fixed (α,β) ∈ T , we now find the radius r which mini-

mizes C1
α,β(Dr) for r2 ∈ I3. Since C1

α,β is a continuous function, this occurs at critical

values, r , where either
dC1

α,β (Dr )

dr
= 0 or values where C1

α,β(Dr) is not differentiable.

For the interval I3, the critical radius r∗
1 , satisfying dCα,β (Dr )

dr
= 0, is

r∗2
1 = 1

π

√
βj0,1

√
βj0,1 +

√
αj2

0,1 + (1 − α − β)j2
1,1

.
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Thus we consider the following three critical values

C1
α,β(Dr) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1
α,β(D0) = π(αj2

0,1 + (1 − α)j2
1,1) if r2 = 0

π(
√

βj0,1 +
√

αj2
0,1 + (1 − α − β)j2

1,1)
2 if r2 = r∗2

1

2π((α + β)j2
0,1 + (1 − α − β)j2

1,1) if r2 = 1
2π

.

(3.3)

The result now follows from a comparison of the values in (3.3). �

A consequence of the following proposition is that the minimizers in Proposition 3
are also minimizers over U , the class of domains consisting of the disjoint union of
an arbitrary number of balls.

Proposition 5 Any disconnected minimizer Ω of C1
α,β(Ω) over U has exactly two

connected components, i.e., Ω ∈ B 
B.

Proof If is clear that the minimizer has at most three components. Suppose Ω is a
minimizer of C1

α,β with three components. Each component must support exactly one
eigenvalue and consequently the radii of the three balls, r1, r2, and r3 satisfy

min
r1,r2,r3

j2
0,1

(
α

r2
1

+ β

r2
2

+ 1 − α − β

r2
3

)

s.t. π
(
r2

1 + r2
2 + r2

3

) = 1

rj ≥ 0 j = 1,2,3.

This is a convex objective function in the squared variables over a compact subset of
an affine subspace of R3. The minimizer is given by

r2
1 = 1

π

√
α√

α + √
β + √

1 − α − β
, r2

2 = 1

π

√
β√

α + √
β + √

1 − α − β
,

r2
3 = 1

π

√
1 − α − β√

α + √
β + √

1 − α − β

with optimal value

Cα,β(3 balls) = πj2
0,1(

√
α + √

β + √
1 − α − β)

(
1√
α

+ 1√
β

+ 1√
1 − α − β

)

≥ 9πj2
0,1.

The result now follows from a direct comparison with the values obtained in Propo-
sition 3. �

Proposition 5 is analogous to [7, Thm. 2(b)] for the restricted class, U . We next con-
sider C

j
α,β for j = 2 over B 
B.
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Proposition 6 Denote Q = [QL,QR] = [ j2
0,1

j2
1,1+j2

0,1
,

j2
1,1

j2
1,1+j2

0,1
]. We define the partition,

T = T 2
1 ∪ T 2

2 ∪ T 2
3 ∪ T 2

4 , by

T 2
1 :=

{

(α,β) ∈ T : β ≤ αj2
1,1 + (1 − α)j2

2,1 − (
√

αj0,1 + √
1 − αj1,1)

2

(j2
2,1 − j2

1,1)
and α ∈ Q

}

T 2
2 :=

{

(α,β) ∈ T : β ≤ (3j2
1,1 − 2j2

0,1 − j2
2,1)α − (2j2

1,1 − j2
2,1)

(j2
2,1 − j2

1,1)
and α ≥ QR

}

T 2
3 :=

{

(α,β) ∈ T : β ≥ j2
2,1 − j2

1,1 − j2
0,1

j2
2,1 − j2

1,1

− α and α ≤ QL,

β ≥ αj2
1,1 + (1 − α)j2

2,1 − (
√

αj0,1 + √
1 − αj1,1)

2

(j2
2,1 − j2

1,1)
and α ∈ Q,

β ≥ (3j2
1,1 − 2j2

0,1 − j2
2,1)α − (2j2

1,1 − j2
2,1)

(j2
2,1 − j2

1,1)
and α ≥ QR

}

T 2
4 :=

{

(α,β) ∈ T : β ≤ j2
2,1 − j2

1,1 − j2
0,1

j2
2,1 − j2

1,1

− α and α ≤ QL

}

Then for C2
α,β(Dr) as defined in (3.2),

min
r2∈[0,(2π)−1]

C2
α,β(Dr) ≡ C2◦

α,β =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π(
√

αj0,1 + √
1 − αj1,1)

2 (α,β) ∈ T 2
1

2π(αj2
0,1 + (1 − α)j2

1,1) (α,β) ∈ T 2
2

π((α + β)j2
1,1 + (1 − α − β)j2

2,1) (α,β) ∈ T 2
3

π(j2
1,1 + j2

0,1) (α,β) ∈ T 2
4

with minimizer given by

r2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π(
√

αj0,1 + √
1 − αj1,1)

2 (α,β) ∈ T 2
1

1
2π

(α,β) ∈ T 2
2

0 (α,β) ∈ T 2
3

1
π

j2
0,1

j2
1,1+j2

0,1
(α,β) ∈ T 2

4 .

Remark 7 The optimal objective function values, C2◦
α,β , and corresponding optimal

parameters, r , are plotted in Fig. 2 for (α,β) ∈ T . The optimal objective function
values for particular values (α,β) ∈ T are given in Table 2 (top).

Proof We first note that the value of C2
α,β(Dr), as defined in (3.2), for r2 ∈ I1 is

a monotone increasing function in r . Thus, the minimum occurs for r = 0, indi-
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Fig. 2 (left) The value of C2◦
α,β := inf{C2

α,β(Dr ) : r2 ∈ [0, (2π)−1]} and (right) the corresponding opti-
mal parameter r for (α,β) ∈ T . See Proposition 6 and Sect. 3

cating the optimal domain is a single ball D0. The optimal value is C2
α,β(D0) =

(α + β)πj2
1,1 + (1 − α − β)πj2

2,1. For fixed (α,β) ∈ T , we now find the radius r

which minimizes C2
α,β(Dr) for r2 ∈ I2 and I3. For the interval I2, the critical radius

r∗
2 satisfying

dC2
α,β (Dr )

dr
= 0 is

r∗2
2 = 1

π

√
(1 − α − β)j0,1√

(1 − α − β)j0,1 + √
(α + β)j1,1

.

For the interval I3, the critical radius r∗
3 satisfying

dC2
α,β (Dr )

dr
= 0 is

r∗2
3 = 1

π

√
αj0,1√

αj0,1 + √
1 − αj1,1

.

Thus, we consider the following five critical values

C2
α,β(Dr) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π((α + β)j2
1,1 + (1 − α − β)j2

2,1) if r2 = 0

π(
√

(1 − α − β)j0,1 + √
(α + β)j1,1)

2 if r2 = r∗2
2

π(j2
1,1 + j2

0,1) if r2 = 1
π

j2
0,1

j2
1,1+j2

0,1

π(
√

αj0,1 + √
1 − αj1,1)

2 if r2 = r∗2
3

2π(αj2
0,1 + (1 − α)j2

1,1) if r2 = 1
2π

.

(3.4)

The result now follows from a comparison of the values in (3.4). �

Remark 8 Along the curve separating T 2
3 from T 2

1 ∪ T 2
2 ∪ T 2

4 , there are two min-
imizers: one with a single connected component and the other with two connected
components.
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4 Computational Method and Results

In this section, we consider the minimization of C
j
α,β(Ω) over the class FN 
 FN ,

where FN is defined in (1.5),

C
j�
α,β = inf

Ω∈FN
C

j
α,β(Ω) and Ω̂

j
α,β = {

Ω ∈ FN 
FN : C
j
α,β(Ω) = C

j�
α,β

}
. (4.1)

We first describe a computational method for the solution of (4.1). In brief, a bound-
ary integral method is used for the solution of the eigenvalue problem (1.1) and a
line search-based BFGS method is used for the solution of (4.1). Similar algorithms
appear in [1, 2, 11]. We then present some computational results for (4.1).

4.1 Computational Methods

The numerical optimization method is initialized with a choice of Fourier coefficients
{ak}Nk=0 in (1.4). We use N = 10 coefficients and choose the coefficients either ran-
domly or using the results from a previous computation. For a given domain, the
first several eigenpairs are computed using the Matlab toolbox mpspack [3]. The
weighted-Neumann-to-Dirichlet scaling method is chosen with the argument ‘ntd’
and M = 100 quadrature points are used. For the optimization problem (4.1), we
use the line-search-based BFGS algorithm implemented in HANSO [14]. This quasi-
Newton method has proven to be effective for non-smooth optimization problems
such as (4.1) [9]. If λj is simple, the derivatives of λj (Ω) with respect to the coeffi-
cients ak describing Ω can be found in, e.g., [11] and are given by

∂λj

∂ak

= −
∫ 2π

0
RN(θ)eıkθ

∣
∣∇ψj

(
RN(θ), θ

)∣
∣2

dθ. (4.2)

In our computations, the Neumann data, ∇uj , is evaluated at the quadrature points
and the integral in (4.2) is evaluated via quadrature. We remark that while the deriva-
tive of an eigenvalue with higher multiplicity can be computed (see, e.g., [6]), in
numerical computations roundoff error causes all eigenvalues to be simple.

To address the questions considered in this paper, we solve the (α,β)-parameter-
ized optimization problem (4.1) for many (≈ 300) values (α,β). We find the method
described above to be extremely effective for this. Solving (4.1) requires on the order
of 40 BFGS iterations, each requiring approximately 1–7 eigenvalue solutions for the
line search. The solution to (4.1) takes approximately 2 minutes using Matlab 2012b
on a 2.0 GHz Intel Core i7 Duo desktop computer with 8GB of RAM.

4.2 Computational Results

For j = 1 and 2, we use the computational method described above to solve (4.1) for
approximately 50 specified values (α,β) ∈ T . The results for j = 1 are displayed in
Table 1 (bottom) and Fig. 3. The results for j = 2 are displayed in Table 2 (bottom)
and Fig. 4. All reported values are rounded to four significant digits. Note that all val-
ues attained for the admissible class F10 
F10 are at least as small as those for balls,
B 
B. In what follows, we refer to numerically computed solutions as minimizers.
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Table 1 (top) The value of inf{C1
α,β(Ω) : Ω ∈ B 
 B} and (bottom) inf{C1

α,β(Ω) : Ω ∈ F10 
 F10}
for (α,β) ∈ T . Italic entries are values for which Proposition 2 implies the ball is a local minimizer of
C1

α,β(Ω) over F∞ . See Sect. 4

1 36.34

0.875 43.33 36.34

0.75 46.12 42.63 36.34

0.625 46.12 42.63 39.14 35.64

0.5 46.12 42.63 39.14 35.64 32.15

0.375 46.12 42.63 39.14 35.64 32.15 28.65

0.25 46.12 42.63 39.14 35.64 32.15 28.65 25.16

0.125 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.66

0 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.66 18.17

β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 36.34

0.875 40.09 35.49

0.75 43.17 38.80 33.85

0.625 45.73 41.64 37.12 31.85

0.5 46.12 42.52 38.67 34.44 29.60

0.375 46.12 42.63 39.14 35.51 31.57 27.12

0.25 46.12 42.63 39.14 35.64 32.15 28.49 24.42

0.125 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.46

0 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.66 18.17

β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Fig. 3 (left) The value of inf{C1
α,β(Ω) : Ω ∈ F10 
 F10} and (right) corresponding minimizer for

(α,β) ∈ T . The values where (4.1) was solved are indicated with an ‘x’. Other values are obtained by
linear interpolation. See Sect. 4
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Table 2 (top) The value of inf{C2
α,β(Ω) : Ω ∈ B 
 B} and (bottom) inf{C2

α,β(Ω) : Ω ∈ F10 
 F10} for

(α,β) ∈ T . Using the identity C2
β,1−β

= C1
0,β

for β ∈ [0,1], Proposition 2 applies to the italic entries, i.e.,
the ball is a local minimizer. See Sect. 4

1 46.12

0.875 50.72 46.12

0.75 55.31 50.72 46.12

0.625 59.90 55.31 50.72 46.12

0.5 64.29 59.90 55.31 50.72 46.12

0.375 64.29 64.29 59.90 55.31 50.72 46.12

0.25 64.29 64.29 64.29 59.90 55.31 50.72 46.12

0.125 64.29 64.29 64.29 63.67 59.90 55.31 50.32 43.33

0 64.29 64.29 64.29 63.67 61.10 56.68 50.32 43.33 36.34

β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 46.12

0.875 50.55 46.12

0.75 54.69 50.55 46.12

0.625 58.60 54.69 50.55 46.12

0.5 62.29 58.60 54.69 50.55 46.12

0.375 64.29 61.50 57.95 54.16 50.10 45.73

0.25 64.29 62.02 58.91 55.65 52.17 48.45 43.17

0.125 64.29 62.02 58.91 55.71 52.43 49.05 45.54 40.09

0 64.29 62.02 58.91 55.71 52.43 49.05 45.57 41.97 36.34

β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Fig. 4 (left) The value of inf{C2
α,β(Ω) : Ω ∈ F10 
 F10} and (right) corresponding minimizer for

(α,β) ∈ T . The values where (4.1) was solved are indicated with an ‘x’. Other values are obtained by
linear interpolation. See Sect. 4
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For j = 1, we observe the following.

(1) For (α,β)-values in the region {(α,β) ∈ T : α + 2β ≤ 1}, the optimal solution
is a ball. The ball is shown to be a local minimizer in Proposition 2 (proven in
Sect. 2).

(2) (Connectivity.) We observe that the optimal domain has one connected compo-
nent except for (α,β) = (0,1). This supports a conjecture of Iversen and Maz-
zoleni [7].

(3) We observe numerically that the minimizer is unique and continuously varies
with respect to α and β .

(4) (Symmetry.) For all (α,β) values considered, the minimizer has two axis of sym-
metry.

(5) (Eigenvalue multiplicity.) For (α,β)-values in the region {(α,β) ∈ T : α +
2β ≤ 1}, the optimal solution is a ball with λ1 < λ2 = λ3 < λ4. For (α,β) =
(0,1), the optimal solution is two balls of equal measure with λ1 = λ2 < λ3 = λ4.
For all other (α,β)-values considered, the first four eigenvalues of the optimal
domain are each simple.

(6) (Comparison to Proposition 3.) For Ω ∈ B 
 B and (α,β) ∈ T 1
1 as defined in

Proposition 3, the optimal shape is a ball with λ1 < λ2 = λ3 < λ4. For (α,β) ∈
T 1

2 , the minimizer is the disjoint union of two balls of equal measure with λ1 =
λ2 < λ3 = λ4.

For j = 2, we observe the following.

(1) For α + β = 1 and 0 ≤ β ≤ 1
2 , the ball is a local minimizer. This follows from

the identity C2
β,1−β = C1

0,β for β ∈ [0,1] and Proposition 2.
(2) (Connectivity.) We observe that the optimal domain has one connected com-

ponent except for (α,β) = (1,0) and in a neighborhood of (α,β) = (0,0).
We conjecture that the (α,β)-region containing (1,0) with disconnected mini-
mizer consists only of the isolated point (1,0). To investigate the region near
(α,β) = (0,0) further, we solve (4.1) 121 additional times for a selection of
values (α,β) ∈ [0,0.1] × [0,0.5] ⊂ T . The optimal values and minimizers are
plotted in Fig. 5. The black line is the intersection of the linear interpolation of
obj. function values for one- and two-component regions. We observe that the
optimal shape has two connected components for α � 0.03 and β � 0.4.

(3) We observe numerically that the minimizer is unique except along the (α,β)-
curve shown in Fig. 5 (left) separating the minimizers with one and two con-
nected components. For (α,β) values on this curve, the optimal set Ω̂2

α,β consist
of a domain with one connected component and a two-connected component do-
main. Away from the curve, the minimizer varies continuously with respect to α

and β .
(4) (Symmetry.) For all (α,β) values considered, connected minimizers have two

axis of symmetry. The disconnected minimizers for (α,β) values near (0,0) have
only one axis of symmetry.

(5) (Eigenvalue multiplicity.) For (α,β)-values in the region {(α,β) ∈ T : α + β =
1, α ≤ 1

2 }, the optimal solution is a ball with λ1 < λ2 = λ3 < λ4 = λ5. For
(α,β)-values in the region {(α,β) ∈ T : α � 0.03, β � 0.4}, the solution is the
disjoint union of two balls of different measure with λ1 < λ2 = λ3 = λ4 < λ5.
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Fig. 5 An enlargement of the (α,β)-region near (0,0) in Fig. 4

For (α,β) = (1,0), the optimal solution is two balls of equal measure with
λ1 = λ2 < λ3 = λ4 = λ5 = λ6. For all other (α,β)-values considered, the first
five eigenvalues of the optimal domain are each simple.

(6) (Comparison to Proposition 6.) For Ω ∈ B 
 B and (α,β) ∈ T 2
1 ∪ T 2

2 ∪ T 2
4

as defined in Proposition 6, the optimal shape has two connected components.
For the more general admissible class FN 
 FN however, the region where
the optimal shape has two connected components is relatively small. For ex-
ample, for (α,β) = (0.5,0), the optimal union of balls has two components
while the minimizer over FN 
 FN has just one. In Fig. 2, the minimizer has
λ1 < λ2 < λ3 = λ4 < λ5 in region T 2

1 , λ1 = λ2 < λ3 = λ4 = λ5 = λ6 in region
T 2

2 , λ1 < λ2 = λ3 < λ4 = λ5 in region T 2
3 , and λ1 < λ2 = λ3 = λ4 < λ5 in re-

gion T 2
4 .

When comparison is available, our results agree with those for minimizing single
eigenvalues [1, 13], the mean of sequential eigenvalues [2], and convex combinations
of two sequential eigenvalues [12, 15]. In particular, we recover the results

λ�
1 = πj2

0,1 ≈ 18.17, λ�
2 = 2πj2

0,1 ≈ 36.34, λ�
3 = πj2

1,1 ≈ 46.12, and

λ�
4 = π

(
j2

1,1 + j2
0,1

) ≈ 64.29,

where λ�
j is the optimal j -th eigenvalue. In [12], we numerically observed that for

j = 2 : 5, Cj∗
α,1−α is constant on the interval α ∈ [0, δ] for some constant δ = δ(j) > 0.

Recalling the identity C
j+1
α,1−α = C

j

0,α , in the present context, this implies that C
j∗
α,β

is constant on the line segments {(α,β) : α + β = 1, α ∈ [0, δ]} and {(α,β) : α =
0, β ∈ [0, δ]} for j = 2,3,4. For these larger j -values, it would be interesting to
see whether these line segments can be extended to regions α + β < 1 and α > 0
respectively.
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5 Discussion and Further Directions

We have studied the shape optimization problem of minimizing the convex com-
bination of three sequential Laplace-Dirichlet eigenvalues, C

j
α,β(Ω) := αλj (Ω) +

βλj+1(Ω) + (1 − α − β)λj+2(Ω) over several different admissible sets. In partic-

ular, we compare the values and minimizers of C
j
α,β(Ω) for j = 1,2 for the two

admissible sets: disjoint unions of domains with smooth boundary, FN 
 FN , and
disjoint unions of balls, B 
 B. We have tried to catalogue properties of the optimiz-
ers in hope that our observations stimulate interesting future analytical development
in this area.

We conclude with a brief qualitative comparison of the computational method
used in the present work and the method recently introduced in [12]. There are two
primary differences between these two approaches: (i) in the present work the eigen-
value problem is solved using boundary integral methods, while in [12] it is solved
using finite element methods and (ii) in the present work, we have represented the
domain using Fourier coefficients, while in [12] the domain is represented using
the level set method. We have found the finite element method to be more robust,
but much slower and less accurate than the boundary element method. The level set
method has the advantage of not fixing the topology of the domain. However, cur-
rently available methods for solving the eigenvalue problem require either extracting
points on the boundary or a parameterization of the boundary. Thus, each iteration
of a gradient-based optimization method requires a rootfinding algorithm to find ap-
proximate points on the boundary. We view the problem of finding a method which
utilizes the level-set function representation of the domain, but doesn’t require such
rootfinding at each iteration to be a challenging extension of this work.

Acknowledgements Braxton Osting is partially supported by a National Science Foundation (NSF)
Postdoctoral Fellowship DMS-11-03959 and Chiu-Yen Kao is partially supported by NSF DMS-1318364.
We would like to thank Mette Iversen for sharing with us a preliminary draft of [7].

References

1. Antunes, P.R.S., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann
Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)

2. Antunes, P.R.: Optimization of sums and quotients of Dirichlet–Laplacian eigenvalues. Appl. Math.
Comput. 219(9), 4239–4254 (2013)

3. Betcke, T., Barnett, A.: mpspack, a MATLAB toolbox to solve Helmholtz PDE, wave scattering,
and eigenvalue problems using particular solutions and integral equations. http://code.google.com/p/
mpspack/ (2012)

4. Bucur, D.: Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal.
206(3), 1073–1083 (2012)

5. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Vol. I. Interscience, New York (1953)
6. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)
7. Iversen, M., Mazzoleni, D.: Minimizing convex combinations of low eigenvalues ESAIM Control

Optim. Calc. Var., to appear
8. Kuttler, J.R., Sigillito, V.G.: Eigenvalues of the Laplacian in two dimensions. SIAM Rev. 26(2), 163–

193 (1984)
9. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Program.,

1–29 (2012)

http://code.google.com/p/mpspack/
http://code.google.com/p/mpspack/


Appl Math Optim (2014) 69:123–139 139

10. Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. J. Math. Pures Appl.
100(3), 433–453 (2013)

11. Osting, B.: Optimization of spectral functions of Dirichlet-Laplacian eigenvalues. J. Comput. Phys.
229(22), 8578–8590 (2010)

12. Osting, B., Kao, C.-Y.: Minimal convex combinations of sequential Laplace-Dirichlet eigenvalues.
SIAM J. Sci. Comput. 35(3), B731–B750 (2013)

13. Oudet, E.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM
Control Optim. Calc. Var. 10, 315–335 (2004)

14. Overton, M.L.: HANSO: Hybrid algorithm for non-smooth optimization. http://www.cs.nyu.edu/
overton/software/hanso/ (2012)

15. Wolf, S.A., Keller, J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond. A
447, 397–412 (1994)

http://www.cs.nyu.edu/overton/software/hanso/
http://www.cs.nyu.edu/overton/software/hanso/


Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


	c.245_2013_Article_9219.pdf
	Minimal Convex Combinations of Three Sequential Laplace-Dirichlet Eigenvalues
	Abstract
	Introduction
	Previous Results
	Results and Outline

	Results for the Minimum of Calpha,betaj(Omega) over the Admissible Sets A and Finfty
	Minimum of Calpha,beta1(Omega) and Calpha,beta2(Omega) over the Union of Two Disjoint Balls, BB
	Computational Method and Results
	Computational Methods
	Computational Results

	Discussion and Further Directions
	Acknowledgements
	References



